غزال زیاری: DeepMind گوگل حالا این توانایی را دارد تا با آموزش رباتهای کوچک، آنها را به زمین فوتبال بفرستد. در مقاله جدیدی که در مجله Science Robotics منتشر شده، محققان درباره تلاشهایشان برای تطبیق زیرمجموعهای از یادگیری ماشینی به نام یادگیری تقویتی عمیق (Deep RL) توضیح دادهاند که از آن برای آموزش نسخه ساده شده ورزش فوتبال به رباتهای دوپا استفاده میشود.
به گزارش سرویس اخبار فناوری ورزشی سایت شات ایکس و به نقل از خبرآنلاین اعضای این تیم، یادآور شدهاند که در آزمایشهای مشابه گذشته، رباتهای چهارپای مشابه و چابکی ساخته بودند ولی تلاش چندانی برای ساخت رباتهای دوپا و انساننما انجام نشده بود. اما ویدیوی اخیر منتشر شده، رباتهای دوپا را در حال دریبل زدن، دفاع و شوتزنی به سمت دروازه حریف نشان میدهد و حکایت از آن دارد که یادگیری تقویت عمیق مربی چقدر در ماشینهای انساننما، کاربردی و خوب است.
ورود رباتها به عرصههای مختلف
این درحالی است که این رباتها در نهایت در پروژههای عظیمی مثل پیشبینی آبوهوا و مهندسی مواد طراحی شدهاند. اما بدین ترتیب Google DeepMind این قابلیت را دارد که در بازی هایی مثل شطرنج و یا حتی Starcraft II رقبای انسانی را از پیش رو بردارد. البته همه این مانورهای استراتژیک به حرکات و هماهنگیهای فیزیکی پیچیدهای نیاز ندارند.
عکس : ربات فوتبالیست
هرچند که DeepMind تا به امروز توانسته تا به بررسی حرکات شبیهسازی شده فوتبال بپردازد ولی هنوز قادر نبوده تا آن را در زمین بازی فیزیکی پیادهسازی کند که این روند هم با سرعت بالایی در حال تغییر است.
مهندسان برای ساخت یک فوتبال یست مینیاتوری، در ابتدا دو مجموعه مهارت عمیق RL را در شبیهسازی کامیپوتری ساخته و آموزش دادند که عبارت بود از توانایی بلند شدن از روی زمین و نحوه به ثمر رساندن گل مقابل یک حریف آموزشندیده. پس از آن، آنها عملا سیستمشان را آموزش دادند تا با ترکیب این مجموعه مهارتها، یک مسابقه کامل فوتبال دو نفره (یک به یک) را برگزار کرده و بعد از آن به شکلی تصادفی آنها را مقابل رباتهایی که تا حدودی تمرین داده شده بودند به میدان فرستادند.
در مرحله دوم، این رباتها یادگرفتند تا مهارتهایی که قبلا آموخته بودند را با هم ترکیب کنند؛ سپس این مهارتها را برای انجام وظایف کاملا فوتبال ی ترکیب کرده و رفتار حریف را پیشبینی کنند. در جریان بازی ، این رباتها به شیوهای کاملا روان، وظایف مختلفی را پیادهسازی میکردند.
به لطف RL، رباتهای DeepMind خیلی زود یاد گرفتند تا تواناییهایشان را در نحوه ضربه زدن و شوت زدن به توپ، مهار شوتها و حتی دفاع از دروازه در برابر حریف با استفاده از بدن بهبود ببخشند.
حرفهایتر از پیشبینیها
عکس : مسابقه فوتبال ربات ها
در جریان مسابقات یک به یک بااستفاده از رباتهای آموزش دیده توسط Deep RL، این دو ورزشکار مکانیکی سریعتر از آنچه مهندسان مهارتهای مقدماتیشان را تنظیم کرده بودند، راه میرفتند، میچرخیدند، شوت میزدند و میایستادند. اینها اصلا پیشرفتهای کوچکی نبود. رباتها ۱۸۱% سریعتر راه میرفتند. ۳۰۲% سریعتر میچرخیدند، ۳۴% سریعتر شوت میزدند و ۶۳% به زمان کمتری برای بلند شدن بعد از زمین خوردن نیاز داشتند. به علاوه رباتهای آموزش دیده توسط Deep RL ، رفتارهای جدیدی را برای چرخیدن و تغییر پایشان به نمایش گذاشتند.